Math 2a Homework 8 Solutions

Problem 1. For \(x = 0, 1, \ldots, 10 \), we compute the likelihood ratio
\[
\frac{f_0(x)}{f_1(x)} = \frac{\binom{10}{x} \times 0.6^x \times 0.4^{10-x}}{\binom{10}{x} \times 0.7^x \times 0.3^{10-x}} = \frac{4}{3} \times \left(\frac{9}{14} \right)^x.
\]
Numerically, this gives
\[
\begin{array}{cccccccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 f_0(x)/f_1(x) & 17.76 & 11.42 & 7.34 & 4.72 & 3.03 & 1.95 & 1.25 & 0.81 & 0.52 & 0.33 & 0.21 \\
\end{array}
\]
The ratio decreases as \(x \) increases. So the likelihood ratio test rejects for larger values of \(x \). The rejection region is of the form \(\{ x \geq n \} \). The corresponding significance level is the probability that we reject the null hypothesis when it is true, namely, \(P_{0.6}(X \geq n) \) i.e. the probability that a binomial random variable with 10 trials and a probability of success equal to .6 is greater or equal to \(n \). The values are given below (as a function of the cut-off \(n \)).
\[
\begin{array}{c|c}
 n & \text{significance level} \\
10 & 0.006046618 \\
9 & 0.046357402 \\
8 & 0.167289754 \\
\end{array}
\]

Problem 2. (a) The mean lifetime of a battery is equal to
\[
\int_0^\infty t f(t|\lambda) dt = \int_0^\infty \frac{t}{\lambda} e^{-t/\lambda} dt = \lambda \int_0^\infty s e^{-s} ds,
\]
where we set \(s = t/\lambda \). Since
\[
\int_0^\infty s e^{-s} ds = -(s + 1) e^{-s} \bigg|_0^\infty = 0 - (-1) = 1,
\]
we see that the mean lifetime of a battery is \(\lambda \).

(b) The likelihood ratio is
\[
\frac{\prod_{i=1}^n f(T_i|1)}{\prod_{i=1}^n f(T_i|1.5)} = \frac{\prod_{i=1}^n (e^{-T_i/1}/1)}{\prod_{i=1}^n (e^{-T_i/1.5}/1.5)}
= 1.5^n \exp\left(-\sum_{i=1}^n T_i + \sum_{i=1}^n T_i/1.5\right) = 1.5^n \exp\left(-\sum_{i=1}^n T_i/3\right).
\]
The ratio decreases as \(\sum T_i = n \bar{T} \) increases. So the likelihood ratio test rejects for larger values of \(\bar{T} \), which means that the rejection is of the form \(\{ \bar{T} \geq C \} \). The corresponding significance level is
\[
P_1 \left(\sum T_i \geq nC \right) = \int_{\sum t_i \geq nC} \prod_{i=1}^n f(t_i|1) dt_1 \cdots dt_n
\]
\[\int_{t_i \geq 0, \sum t_i \geq nC} e^{-\sum t_i} dt_1 \ldots dt_n. \]

If we set \(S = \sum t_i \) and \(y_i = t_i / S \), then \(dt_1 \ldots dt_n = S^{n-1} dS dy_1 \ldots dy_{n-1} \). And \((y_1, \ldots, y_{n-1})\) runs over the region \(y_i \geq 0, \sum_{i=1}^{n-1} y_i \leq 1 \). So the above formula is equal to

\[\int_{nC}^{\infty} \int_{y_i \geq 0, \sum_{i=1}^{n-1} y_i \leq 1} S^{n-1} e^{-S} dy_1 \ldots dy_{n-1} dS = \int_{nC}^{\infty} \frac{S^{n-1}}{(n-1)!} e^{-S} dS. \]

By integration by parts, we compute the significance level to be equal to \(e^{-nC \sum_{k=0}^{n-1} \frac{(nC)^k}{k!}} \).

Problem 3. (a) For \(i = 1, \ldots, 16 \), let \(x_i \) denote the number of cans of beer the \(i \)-th student drank, and \(y_i \) be the corresponding BAC number. We compute \(\bar{x} = \sum_{i=1}^{16} x_i / 16 = 4.8125 \) and \(\bar{y} = \sum_{i=1}^{16} y_i / 16 = 0.07375 \). Thus,

\[s_x = \sqrt{\sum_{i=1}^{16} (x_i - \bar{x})^2 / (16 - 1) = 2.197536}; \]

\[s_y = \sqrt{\sum_{i=1}^{16} (y_i - \bar{y})^2 / (16 - 1) = 0.04414}; \]

\[r = \frac{\sum_{i=1}^{16} (x_i - \bar{x}) \times (y_i - \bar{y})}{(16 - 1) \times s_x \times s_y} = 0.894338. \]

It then follows that the slope of the regression line is

\[b_1 = r \frac{s_y}{s_x} = 0.017964 \]

and the intercept is

\[b_0 = \bar{y} - b_1 \bar{x} = -0.0127. \]

Finally, \(r^2 = 0.799841 \) and the equation of the regression line is given by

\[y = -0.0127 + 0.017964x. \]

(b) Let \(\rho \) denote the correlation between \(x \) and \(y \). We will test

\[H_0 : \rho = 0 \text{ versus } H_a : \rho > 0. \]

Compute the t-statistic:

\[t = \frac{r \sqrt{16 - 2}}{\sqrt{1 - r^2}} = 7.479592. \]

In terms of a random variable \(T \) having \(t(16 - 2) \) distribution, the \(P \)-value for the test is

\[P(T \geq t) = 1.48 \times 10^{-6}, \]
which is very small. The conclusion is that there is very strong evidence that drinking more beers increases blood alcohol.

Problem 4. (a) Let $y =$ interval until the next eruption and $x =$ duration of an eruption, both in minutes, for all eruptions of Old Faithful Geyser over the 8-day period. The general linearity of the scatter plot of time-between(y) versus duration (x) suggests use of a simple linear regression model,

$$ y = \beta_0 + \beta_1 x + \text{error} $$

The fitted model is

$$ y = b_0 + b_1 x, $$

where

$$ b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = 10.3582, $$

$$ b_0 = \bar{y} - b_1 \bar{x} = 33.9668. $$

For reference, $\bar{x} = 3.57613$ and $\bar{y} = 71.0090$.

(b) We have made $n = 222$ observations. Suppose we have just observed $x = d$, we want to predict y. Note that the **mean value** of the interval until the next eruption is $E y = \beta_0 + \beta_1 d$, so we use $b_0 + b_1 d$ as a (least square) estimator of $E y$. In class, we showed that

$$ t = \frac{b_0 + b_1 d - (\beta_0 + \beta_1 d)}{s \sqrt{\frac{1}{n} + \frac{(d - \bar{x})^2}{\sum (x_i - \bar{x})^2}}} $$

is a student’s t distribution with $n - 2 = 220$ degrees of freedom; here,

$$ s = \frac{RSS}{n - 2} = \frac{\sum (y_i - b_0 - b_1 x_i)^2}{n - 2} $$

is our estimate of the std deviation of the errors. Therefore, a 95% confidence interval for $E y$ is

$$ b_0 + b_1 d \pm s \sqrt{\frac{1}{n} + \frac{(d - \bar{x})^2}{\sum (x_i - \bar{x})^2}} \cdot 1.9708, $$
where 1.9708 is such that $P(|T| \leq 1.9708) = 95\%$, where T has $t(220)$ distribution.

As an aside, recall the key intermediate results

$$
E(b_0 + b_1 d) = \beta_0 + \beta_1 d, \quad \text{Var}(b_0 + b_1 d) = \sigma^2 \left[\frac{1}{n} + \frac{(d - \bar{x})^2}{\sum(x_i - \bar{x})^2} \right].
$$

(c) Let $y = \beta_0 + \beta_1 d + \epsilon$ be a new observation. In this case,

$$
y - (b_0 + b_1 d) = \epsilon + (\beta_0 + \beta_1 d) - (b_0 + b_1 d)
$$

Thus $y - (b_0 + b_1 d)$ is a normal random variable with mean 0 and variance $\sigma^2 \left[\frac{1}{n} + \frac{(d - \bar{x})^2}{\sum(x_i - \bar{x})^2} \right]$. As in part (b), we have

$$
\frac{y - (b_0 + b_1 d)}{s \sqrt{1 + \frac{1}{n} + \frac{(d - \bar{x})^2}{\sum(x_i - \bar{x})^2}}} = \frac{1}{1.9708} = \frac{1}{C}
$$

is a student’s t distribution with 220 degrees of freedom. Therefore, a 95\% confidence prediction interval for y is

$$
b_0 + b_1 d \pm s \sqrt{1 + \frac{1}{n} + \frac{(d - \bar{x})^2}{\sum(x_i - \bar{x})^2}} \cdot 1.9708
$$

(d) We compute $s = 6.15853$. For the case $d = 4.0$, $b_0 + b_1 d = 75.39958$, and

$$
s \sqrt{1 + \frac{1}{n} + \frac{(d - \bar{x})^2}{\sum(x_i - \bar{x})^2}} \cdot 1.9708 = 0.874932,
$$

$$
s \sqrt{1 + \frac{1}{n} + \frac{(d - \bar{x})^2}{\sum(x_i - \bar{x})^2}} \cdot 1.9708 = 12.16902.
$$

So the numerical answers to (b) and (c) are $[74.52465, 76.27451]$ and $[63.23056, 87.56860]$, respectively.

Appendix. There are a total of 222 observations in total in the dataset. Some of them are not in the 8-day period. If we used the whole dataset, we would obtain the following results:

The fitted line is

$$
y = 33.96676 + 10.35821x.
$$

When $d = 4$, a 95\% confidence interval for the mean is

$$
75.39958 \pm 0.87493 = [74.52465, 76.27451],
$$

and a 95\% prediction interval for y is

$$
75.39958 \pm 12.168877 = [63.23081, 87.56835].
$$

Some intermediate results are: $\bar{x} = 3.57613$, $\bar{y} = 71.00901$, $s = 6.15853$, and the C such that $P(|T| \leq C) = 95\%$) for a t distribution with 220 degrees of freedom is $C = 1.97081$.

4