Review on Random Vectors and Multivariate Normal Distribution

Mean and Covariance of Random Vectors

- We let \(Y = (Y_1, Y_2, \ldots, Y_n) \) be a random vector with mean \(\mu = (\mu_1, \mu_2, \ldots, \mu_n) \). In other words, in vector notations
 \[
 E(Y) = \mu.
 \]
- Introduce the covariance matrix \(\Sigma = \text{Cov}(Y) \) to be the \(n \times n \) matrix whose \((i, j)\) entry is defined by
 \[
 \Sigma_{ij} = \text{Cov}(Y_i, Y_j).
 \]
 where
 \[
 \text{Cov}(Y_i, Y_j) = E[(Y_i - E(Y_i))(Y_j - E(Y_j))].
 \]
- Let \(X = AY \) (\(A \) not random). The mean of the random vector \(X \) is given by
 \[
 E(X) = E(AY) = AE(Y) = A\mu,
 \]
 and the covariance is
 \[
 \text{Cov}(X) = A\text{Cov}(Y)A^T
 \]

The Multivariate Normal Distribution

- \(X \) is an \(n \)-dimensional random vector.
- \(X \) is said to have a multivariate normal distribution (with mean \(\mu \) and covariance \(\Sigma \)) if every linear combination of its component is normally distributed. We then write \(X \sim N(\mu, \Sigma) \).
 \[
 X \sim N(\mu, \Sigma) \iff a^T X \sim N(a^T \mu, a^T \Sigma a)
 \]
 - \(\mu \) is an \(n \times 1 \) vector, \(E(X) = \mu \)
 - \(\Sigma \) is an \(n \times n \) matrix, \(\Sigma = \text{Cov}(X) \).
- Density (\(\Sigma \) nonsingular)
 \[
 f(x) = \frac{1}{(2\pi)^{n/2}\left|\Sigma\right|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma (x - \mu)\right).
 \]
 Remark: if \(\Sigma \) is singular, \(X \) does not have a density.

Properties

Assume \(X \) is multivariate normal

1. Linear transformation. Suppose \(A \) is a non-random matrix, then
 \[
 AX \sim N(A\mu, A\Sigma A^T)
 \]
2. Marginal distribution. Set

\[X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}, \quad X^{(1)} = (X_1, \ldots, X_p), X^{(2)} = (X_{p+1}, \ldots, X_n) \]

and

\[\mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}. \]

Then

\[X^{(1)} \sim N(\mu^{(1)}, \Sigma_{11}) \]

The marginal distribution of any subset of coordinates is multivariate normal.

3. The conditional distribution of \(X^{(2)} \) given \(X^{(1)} \) is multivariate normal. There is formula for the mean and covariance matrix.

4. Independence.

- \(X = (X_1, X_2) \) bivariate normal. \(X_1 \) and \(X_2 \) are independent if and only if they are uncorrelated.
- More generally, \(X = (X^{(1)}, X^{(2)}) \) multivariate normal. \(X^{(1)} \) and \(X^{(2)} \) are independent if and only if they are uncorrelated, i.e. \(\text{Cov}(X^{(1)}, X^{(2)}) = \Sigma_{12} = 0 \).