LOADING DATA

```r
# Read in the data
forbes <- read.table("forbes")
# and now look at it
forbes

V1   V2
1 194.5 131.79
2 194.3 131.79
3 197.9 135.02
4 198.4 135.55
5 199.4 136.46
6 199.9 136.83
7 200.9 137.82
8 201.4 138.00
9 201.3 138.05
10 203.6 140.04
11 204.6 142.44
12 209.5 145.47
13 208.6 144.34
14 210.7 146.30
15 211.9 147.54
16 212.2 147.80
```

Try reading in the data while recognizing the headers
```r
forbes <- read.table("forbes",header=T)
# and now look at it.
forbes
```

```r
Tb   logP
1  194.5 131.79
2  194.3 131.79
3  197.9 135.02
4  198.4 135.55
5  199.4 136.46
6  199.9 136.83
7  200.9 137.82
8  201.4 138.00
9  201.3 138.05
10 203.6 140.04
11 204.6 142.44
12 209.5 145.47
13 208.6 144.34
14 210.7 146.30
15 211.9 147.54
16 212.2 147.80
```

Note: a slick way to load data posted online is
```r
data <- read.table("http://webaddressofdata", header = T)
```

We can now reference the columns of 'forbes' using the headers.
```r
forbes$Tb
forbes$logP
```

Now reference the columns by name
```r
Tb
logP
```

First you can learn more about the data using the summary command
```r
summary(forbes)
```

```
Tb             logP
Min.   :194.3   Min.   :131.8
1st Qu.:199.4   1st Qu.:136.5
Median :201.3   Median :138.1
Mean   :203.0   Mean   :139.6
3rd Qu.:208.6   3rd Qu.:144.3
Max.   :212.2   Max.   :147.8
```

and the attribute command
```r
attributes(forbes)
```

```r
$names
```
> # We can access just the second column of 'forbes'.
> forbes[,2]
[1] 131.79 131.79 135.02 135.55 136.46 136.83 137.82 138.00 138.06 138.05 140.04
[12] 142.44 145.47 144.34 146.30 147.54 147.80
> # or just the third row
> forbes[3,]
 Tb logP
 3 197.9 135.02
> # or just the second element of the column 'Tb'
> Tb[2]
[1] 194.3
> # Note: there are no scalars in R, hence the value returned
> # above is a vector of dim [1]. Also, the above manipulations
> # were just to show the use of the ',' operator.
> # Since 'forbes' is a data.frame, we normally access its
> # columns using the column names, Tb, logP, as shown previously.
> #
> # We can make a subset of the forbes data
> forbes.highT <- data.frame(forbes[Tb >= 200,])
> # The comma after 200 brings the corresponding values of logP
> # into the new data.frame
> forbes.highT
 Tb logP
 7 200.9 137.82
 8 201.1 138.00
 9 201.4 138.06

16 211.9 147.54
17 212.2 147.80
> # Convert the temperature to Kelvin
> Tb_Kelv <- (5/9) * (Tb - 32) + 273
> # To add the temperature in Kelvin to the forbes data
> # first we make the vector Tb_Kelv into a data.frame
> Tb_Kelv <- data.frame(Tb_Kelv)
> # Now use cbind to combine the two data frames
> forbes.expanded <- cbind(forbes,Tb_Kelv)
> forbes.expanded
 Tb logP Tb_Kelv
 1 194.5 131.79 363.2778
 2 194.3 131.79 363.1667
 3 197.9 135.02 365.1667
 4 198.4 135.55 365.4444
 5 199.4 136.46 366.0000

> # Rename the last column to "Tk"
> attr(forbes.expanded,"names") <-c("Tb","logP","Tk")
> forbes.expanded
 Tb logP Tk
 1 194.5 131.79 363.2778
 2 194.3 131.79 363.1667
 3 197.9 135.02 365.1667

> # We are starting to see how R treats vectors.
> # To make a 'list' use the concatenate command c().
> # Above we made a list of names.
> # Below we make a list of numbers (i.e. a vector).
> v <- c(1,1,2,2,3,0)
> v
> [1] 1 1 2 2 3 0
> v[3]
> [1] 2
> # R does vector math.
> # Here's an example of element by element multiplication
> T_sq = Tb * Tb
> T_sq
> [1] 37838.25 37752.49 39164.41 39362.56 39960.36 39960.01 40360.81 40441.21
> [9] 40561.96 40521.69 41452.96 41861.16 43890.25 43513.96 44394.49 44901.61
> [17] 45028.84
> # and here's an example of vector multiplication
> T_norm = sqrt(t(Tb) %*% Tb)
> T_norm
> [,1]
> [1,] 837.1135
> # t() is the transpose, though R is smart enough that
> T_norm = sqrt(Tb %*% Tb)
> # works just as well
> #
> # Arrays are made out of vectors of data, to which we assign
> # dimensions. For example, make a vector of numbers, 1 through 27.
> index <- seq(1:27)
> # Then divide this vector 'index' up into a 3x3x3 array.
> dim(index) <- c(3,3,3)
> index
> , , 1

> [,1] [,2] [,3]
> [1,] 1 4 7
> [2,] 2 5 8
> [3,] 3 6 9
> , , 2

> [,1] [,2] [,3]
> [1,] 10 13 16
> [2,] 11 14 17
> [3,] 12 15 18
> , , 3

> [,1] [,2] [,3]
> [1,] 19 22 25
> [2,] 20 23 26
> [3,] 21 24 27

> # We see that arrays are stored column by column, similar to FORTRAN
> # Finally, you can save the data you were working with and load it
> # later
> save("index", file="savetest",ascii=FALSE)
> rm(index)
> load(file="savetest")
> index()
> , , 1

> [,1] [,2] [,3]
> [1,] 1 4 7
> [2,] 2 5 8
> [3,] 3 6 9
>
Example: Simple Linear Regression

Now suppose we would like to fit a linear model to this data.

We do this using the function `lm`.

To regress Y on X, use `lm(Y ~ X)`. So in our case we have

```r
fit <- lm(logP ~ Tb)
```

```r
Call:
  lm(formula = logP ~ Tb)

Coefficients:
  (Intercept)      Tb
  -42.1309      0.8955
```

So this gave us a two parameter fit, intercept and slope.

RMS ERROR

What else do we want to know about our linear model? How about the
residual mean square (\(\sigma^2\))

The formula for \(\sigma^2\) is

\(\sigma^2 = \text{RSS} / \text{DOF}\)

We could use our model to calculate the residuals, then square them,
then sum them.... but we don't actually need to do all that work ourselves.
Here's an easier way (but still not the easiest). From `attributes(fit)` or
`help(lm)` we learn that the residuals are already calculated for us.

```r
> fit$resid
   1            2            3            4            5            6
-0.246590305 -0.067497800 -0.061162889  0.021105848  0.035643323 -0.042087939
```

or equivalently

```r
> resid(fit)
   1            2            3            4            5            6
-0.246590305 -0.067497800 -0.061162889  0.021105848  0.035643323 -0.042087939
```

and the DOF are stored as `df.resid`

so we can calculate the residual mean square

```r
> sum( (fit$resid)^2 ) / fit$df.resid
[1] 0.1435546
```

While it's informative to know how to access the individual model
properties such as resid, df.resid, etc., there is an even easier way to calculate
the residual mean square.

```r
> summary(fit)
```

```r
Call:
  lm(formula = logP ~ Tb)

Residuals:
   Min     1Q Median     3Q    Max
-0.32261 -0.14530 -0.06750  0.02111  1.35924

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.1309    3.33895  -12.62 2.17e-09 ***
Tb           0.89546    0.01645   54.45  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . ‘.’ 1

Residual standard error: 0.3789 on 15 degrees of freedom
Multiple R-Squared: 0.995, Adjusted R-squared: 0.9946
F-statistic: 2965 on 1 and 15 DF,  p-value: < 2.2e-16
# From the summary we see that the residual standard error, sigma_hat, which
# is also often called the standard error of regression, is 0.3789. Square
# this to get the residual mean square.
> 0.3789^2
[1] 0.1435652

# VARIANCE
# Want to know the variance of the parameters? Summary lists the Std. Error, and
# variance is just the square of the standard error.
# Heres a fancy way to square these parameters.
> beta_hat <- data.frame(summary(fit)$coef)
# Using the 'data.frame' command allows us to access elements by name
> beta_hat$Std..Error
[1] 3.33895220 0.01644562
> beta_hat.var <- beta$Std..Error^2
> beta_hat.var
[1] 1.114860e+01 2.704585e-04

# Now consider using analysis of variance to test the null hypothesis
# that the intercept should be at the origin. Create a new model, and
# force it to go through the origin.
> fit.org <- lm( logP ~ 0 + Tb )
> anova(fit.org, fit)
Analysis of Variance Table

Model 1: logP ~ 0 + Tb
Model 2: logP ~ Tb

Res.Df RSS Df Sum of Sq      F    Pr(>F)
1     16 25.0092
2     15  2.1533  1   22.8559 159.21 2.170e-09 ***
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

# The probability that this is true is 2.17e-09, so we reject the
# null hypothesis.

# CONFIDENCE INTERVALS
# What if we want to know the 95% confidence interval for the model
# intercept. We just saw how to get the standard error, so now all we
# need is t-test value.
> t <- qt( 1- 0.025, fit$df.residual )
> t
[1] 2.131450

# To calculate the interval bounds (lamda), first change the loaded object
> detach(forbes)
> attach(beta_hat)
# Now calculate the bounds as two elements of a vector c(lower,upper).
> lamda_intercept <- c(Estimate[1] - t * Std..Error[1], Estimate[1] + t * Std..Error[1])
> lamda_intercept
[1] -49.24768 -35.01406

# PLOTTING
# It's always a good idea to plot the data
> plot(Tb,logP)
# Usually its good to look at residuals vs fitted values.
# While we know how to access the residuals (fit$resid), the plot
# function recognizes 'lm' object, and will give us this, and other
# plots, automatically.
> plot(fit)
Hit <Return> to see next plot:
# To see how the fit matches with the data, use abline.
# Note: abline adds a line to a preexisting plot, so you must have
# already done plot(Tb, logP)
plot(Tb, logP)
abline(fit)
# Add confidence intervals to the plot.
# Use the function predict, in "prediction" mode. By default
# it will calculate values for all of the X data in the model
# you give it ( see help(predict.lm) ).
limits <- data.frame(predict(fit, interval = "prediction"))

fit lwr  upr
1  132.0366  131.1544  132.9188
2  131.8575  130.9729  132.7421
3  135.0812  134.2315  135.9308
....
16  147.6176  146.7294  148.5058
17  147.8863  146.9943  148.7782

# Pick out the endpoints, and make them the Y vector of the X,Y
# coordinates to feed to the function 'lines'. lty=2 gives
# us a dotted line.
lines(c(Tb[1], Tb[17]), c(limits$lwr[1], limits$lwr[17]), lty=2)
lines(c(Tb[1], Tb[17]), c(limits$upr[1], limits$upr[17]), lty=2)

# Add a title
title(main = "Data, fit and ± 95% confidence band")

# (dkh, 10/03/04)