1. Problem 1:

(a) Let A be a normal triangular matrix. Without the loss of generality assume that A is upper triangular, i.e.

$$
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}
$$

Assume that $a_{1j} \neq 0$ for $j = 2 \ldots n$. Then the $(1,1)$ element of A^*A is equal to $a_{11}^2 + a_{12}^2 + \ldots + a_{1n}^2$. The $(1,1)$ element of AA^* is equal to a_{11}^2. Since A is normal, $a_{11}^2 + a_{12}^2 + \ldots + a_{1n}^2 = a_{11}^2$ and, therefore, $a_{1j} = 0$ for $j = 2 \ldots n$.

Now assume that $a_{2j} \neq 0$ for $j = 3 \ldots n$. Using the above proven fact that $a_{12} = 0$ we can compare the $(2,2)$ entries of A^*A and AA^* to show that all $a_{2j} = 0$ for $j = 3 \ldots n$.

Similarly, proceeding row by row and comparing the diagonal entries of A^*A and AA^* we can see that in order for an upper triangular A to be normal, it has to be diagonal.

(b) Any $n \times n$ matrix A can be represented as $A = UTU^*$, where T is upper triangular and U is unitary.

Assume that A is normal, then $A^*A = AA^*$ and we have $UT^*TU^* = UTT^*U^*$, thus, $T^*T = TT^*$. By part (a) we know that if an upper triangular matrix T is normal, then it is diagonal. Since the diagonal entries of the Schur form T are the eigenvalues of A and T is a diagonal matrix, then $A = UTU^*$ gives an eigenvalue decomposition of A. Thus, A has n orthogonal eigenvectors.

Now suppose A has n orthogonal eigenvectors (denote the matrix of these eigenvectors by U), then it can be represented as $A = U^*DU$, where D is a diagonal matrix. Then by employing the fact that any diagonal matrix has to be normal we have $A^*A = U^*D^*UU^*DU = U^*D^*DU = U^*DD^*U = U^*DUU^*D^*U = AA^*$. Thus, A is normal.

2. Chapter 25, problem 25.3:

(a) (a) can be obtained by a sequence of left multiplications, but not by a sequence of left- and right-multiplication by matrices Q_j (examples on pp.196-197 illustrate this).

(b) (b) can be obtained by both a sequence of left multiplications and left- and right-multiplication by matrices Q_j (again, see pp.196-197 for an example).

(c) (c) can be obtained by a sequence of left multiplications by Q_j (for example, consider a 3×3 matrix of rank 2).

3. Chapter 27, problem 27.5:

Since A is symmetric, it has a basis of orthonormal eigenvectors $q_1, q_2 \ldots q_m$. Let $\lambda_1, \lambda_2 \ldots \lambda_m$ be the corresponding eigenvalues. Also assume that λ_1 is the eigenvalue that is much smaller than the others.
in absolute value. The goal of the problem is to investigate what happens if \(\lambda_1 \) is very close to the shift \(\mu \) and \(A - \mu I \) is very ill-conditioned.

Let \(\mu = \lambda_1 + \epsilon \), where \(\epsilon \) is very small. Then using the computations on p.95 after \(k \) inverse iterations we have:

\[
(A - \mu I + \delta A)\tilde{w}_{k+1} = v_k
\]

\[
(A - \lambda_1 I - \epsilon I + \delta A)\tilde{w}_{k+1} = v_k
\]

(1)

Divide both the left and the right hand sides by \(\|\tilde{w}_{k+1}\|\):

\[
(A - \lambda_1 I - \epsilon I + \delta A) \frac{\tilde{w}_{k+1}}{\|\tilde{w}_{k+1}\|} = \frac{v_k}{\|\tilde{w}_{k+1}\|}
\]

Let \(v_{k+1} = \frac{\tilde{w}_{k+1}}{\|\tilde{w}_{k+1}\|} \). Then

\[
(A - \lambda_1 I) v_{k+1} = (\epsilon I - \delta A) v_{k+1} + \frac{v_k}{\|\tilde{w}_{k+1}\|}
\]

Because \(\|v_{k+1}\| = \|v_k\| = 1 \), we have:

\[
\|(A - \lambda_1 I) v_{k+1}\| \leq (|\epsilon| + \|\delta A\|) + \frac{1}{\|\tilde{w}_{k+1}\|}
\]

Therefore, if \(\|\tilde{w}_{k+1}\| \) is large, then \(v_{k+1} = \frac{\tilde{w}_{k+1}}{\|\tilde{w}_{k+1}\|} \) gives a good approximation of the eigenvector \(q_1 \).

Because \(q_i \) form a basis of \(\mathbb{R}^m \), for some \(\alpha_i \) and \(\beta_i \) we have the following representations:

\[
v_k = \sum \alpha_i q_i
\]

\[
\tilde{w}_{k+1} = \sum \beta_i q_i
\]

After plugging this into (1) we have:

\[
(A - \lambda_1 I) \sum \beta_i q_i - \epsilon \sum \beta_i q_i + \delta A \sum \beta_i q_i = \sum \alpha_i q_i
\]

(2)

Because \((A - \lambda_1 I) \sum \beta_i q_i = \sum (\lambda_i - \lambda_1) \beta_i q_i \) after multiplication of (2) by \(q_1^T \) on the left we have:

\[-\epsilon \beta_1 + q_1^T \delta A \tilde{w}_{k+1} = \alpha_1 \]

Therefore,

\[
|\alpha_1| \leq |\epsilon| |\beta_1| + \|\delta A\| \|\tilde{w}_{k+1}\|
\]

\[
\leq |\epsilon| \|\tilde{w}_{k+1}\| + \|\delta A\| \|\tilde{w}_{k+1}\|
\]

Thus,

\[
\|\tilde{w}_{k+1}\| \geq \frac{|\alpha_1|}{|\epsilon| + \|\delta A\|}
\]

(3)

Hence, \(\|\tilde{w}_{k+1}\| \) is large and despite ill-conditioning inverse iteration produces an accurate solution.

Note: For this problem I used Wilkinson, The algebraic eigenvalue problem, 1965.

4. **Problem 4:**
(a) function [lambda,v]=rayleigh_quotient(A, num_iter,starting_vector)
 n=size(A);
 v=starting_vector;
 v=v/norm(v);
 lambda=v'*A*v;
 for i=1:num_iter
 w=(A-lambda*eye(n))\v;
 v=w/norm(w);
 lambda=v'*A*v;
 end;
(b) Let $S = U\Sigma V^*$ be the singular value decomposition of S. We know that $\text{Cond}(S) = \frac{\sigma_{\text{max}}(S)}{\sigma_{\text{min}}(S)}$. Therefore, if we fix the ratio of maximum to minimum singular value of S to be equal to 20, and generate the intermediate singular values and orthogonal matrices U and V randomly (for example, by running the QR factorization on randomly generated 4×4 matrices to ensure orthogonality), then $\text{Cond}(S) = 20$.

Example of the code:

function S=gen_s;
 rand1=rand(1)*17+2;
 rand2=rand(1)*17+2;
 Sigma=diag([20 rand1 rand2 1]);
 U_rand=rand(4,4);
 V_rand=rand(4,4);
 [U_orth, R1]=qr(U_rand);
 [V_orth, R2]=qr(V_rand);
 S=U_orth*Sigma*V_orth;
(c) function speed_of_conv
 %obtained by S=gen_s;
 S= [-1.62886147322250 4.24469694941438 -4.08799056407617 -4.90119487824613
 -6.78153604613332 8.55038958204748 3.55067404752499 -5.55946396709622
 5.19316051425327 15.54586417118852 -8.43124975651081 0.25890869393220
 -7.76317650562957 1.71798066224471 0.3031439216199 -6.48956716145272];
 A=S*diag([1 2 6 30])*inv(S);
 F=S;
 %for lambda=1
 starting_vector=[0.32708034490656; 0.47620926031277; 0.22598334525969; 0.96200619568934];
 for num_iter=1:10
 [lambda,v]=rayleigh_quotient(A,num_iter,starting_vector);
 error_1_lambda(num_iter)=abs(1-lambda);
 if (F(1,1)*v(1)<0) v=-v;
 end;
 error_1_v(num_iter)=norm(v-F(:,1)/norm(F(:,1)));
 end;
 %for lambda=2
 starting_vector=[0.30645822520195; 0.77892558525256; 0.8953424433904; 0.25372331901581];
 for num_iter=1:10
 [lambda,v]=rayleigh_quotient(A,num_iter,starting_vector);
error_2_lambda(num_iter)=abs(2-lambda);
if (F(1,2)*v(1)<0) v=-v;
end;
error_2_v(num_iter)=norm(v-F(:,2)/norm(F(:,2)));
end;

%for lambda=6
starting_vector=[0.54423875980860; 0.55844540041460; 0.66968372236257; 0.58392692252473]
for num_iter=1:10
 [lambda,v]=rayleigh_quotient(A,num_iter,starting_vector);
 error_3_lambda(num_iter)=abs(6-lambda);
 if (F(1,3)*v(1)<0) v=-v;
 end;
 error_3_v(num_iter)=norm(v-F(:,3)/norm(F(:,3)));
end;

%for lambda=30
starting_vector=[0.43192792375934; 0.43609798620903; 0.22430472608039; 0.01318434025798];
for num_iter=1:10
 [lambda,v]=rayleigh_quotient(A,num_iter,starting_vector);
 error_4_lambda(num_iter)=abs(30-lambda);
 if (F(1,4)*v(1)<0) v=-v;
 end;
 error_4_v(num_iter)=norm(v-F(:,4)/norm(F(:,4)));
end;

plot(1:10,log10(error_1_lambda),1:10,log10(error_2_lambda),1:10,log10(error_3_lambda),1:10,log10(error_4_lambda));
plot(1:10,log10(error_1_v),1:10,log10(error_2_v),1:10,log10(error_3_v),1:10,log10(error_4_v))
(d) We can deduce from the graphs that for a non-symmetric case the speed of convergence of both eigenvalues and eigenvectors is roughly quadratic.